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Abstract|The burstiness of network traÆc has a profound impact on the performance of many network

protocols. However, a widely accepted de�nition of burstiness, be it either deterministic or probabilistic, does not

exist in the networking community. Deterministic de�nitions of burstiness provide an initial insight into both traÆc

characterization and performance analysis.

We propose a deterministic de�nition of burstiness for network traÆc characterization, based on service curves.

The proposed de�nition facilitates; (1) performance analyses for both average and scalar worst-case performance

guarantees at the same time, (2) a simple systematic approach to performance guarantees, analytically (we show that

the queue size, output traÆc, virtual-delay, aggregate traÆc, etc. at various points in a network can easily be char-

acterized within the framework of the proposed de�nition), (3) a systematic analytical framework for measurement

based analysis of probabilistic performance guarantees that would be inferred via sample-path analyses.

We also discuss the notion of burstiness. We point out that one might want to perceive the burstiness of a

ow from the perspective of a network element; speci�cally, based on the queue size behavior that it induces on

a network element of interest. We indicate that it is the decay rate of the tail of the queue size distribution that

we care about in deciding the degree of burstiness of a ow with respect to another one, after some appropriate

normalizations of the ows. The faster the decay rate is the less bursty the traÆc is, and vice versa.

1 Introduction

With the rapid spread of data networks within the last decade, it has become apparent that network traÆc

exhibits bursty behavior. However, a widely accepted de�nition of burstiness, be it either deterministic or

probabilistic, does not exist in the networking community. Yet, it is known that the burstiness of network

traÆc has a profound impact on the performance of many network protocols in areas such as congestion

control (e.g. TCP), multiple-access (e.g. CSMA), routing (e.g. BGP), and switching and multiplexing in

general.

Deterministic de�nitions of burstiness provide an initial insight into both traÆc characterization and

performance analysis, though they are not appealing for statistical gains. A handful of deterministic

characterization of traÆc with respect to burstiness is introduced in the early 90's [1, 2, 3]|these are

almost all the deterministic characterizations which might be considered as currently relevant. One of

these characterizations [1], and its companion service model (service curve model [4, 5]), has received a

considerable attention from the networking community, recently resulting in two books on the subject [6,

7], primarily because they have facilitated a systematic analytical approach to performance guarantees in

communication networks, much like what we have in linear system theory.

None of these characterizations mentioned above, however, considers average performance guarantees.

Their main focus is on some scalar worst-case performance metrics; such as delay, backlog, or jitter being

less than or equal to a certain scalar quantity, at every point in time at a network element. Average

performance guarantees, on the other hand, are in demand by many applications. Motivated partly

�
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by such demands, a few works on the implications of average case performance guarantees due to the

characterization in [1] have appeared in the literature in recent years, [8, 9].

In this study, we propose a deterministic de�nition of burstiness which could address both average and

scalar worst-case performance guarantees at the same time. Our motivation for this study is threefold:

(1) We would like to try to clarify the notion of burstiness, and how we might want to perceive it. (2) We

would like to come up with a deterministic de�nition of burstiness, and hence a traÆc characterization,

for both average and scalar worst-case performance guarantees, and still retain a systematic analytical

approach as presented by the characterization in [1] and its companion service model that we have

mentioned earlier. (3) We would like the deterministic characterization that we come up with to be

directly applicable to measurement based analysis of probabilistic performance guarantees that would be

inferred via sample-path analyses.

The notion of burstiness, and how we might want to perceive it, will be discussed in section 3. As

for our second motivation, we would like a traÆc characterization to have the following properties: Let C

denote a traÆc characterization, then

1. if two traÆc ows are characterized according to C, then the aggregate of the ows should also be

easily characterized according to C,

2. if a traÆc ow characterized according to C is fed into a network element commonly used in practice,

then

(a) the output ow should also be easily characterized according to C,

(b) and, both the queue size and the virtual delay should also be easily characterized in the same

framework as C,

3. the characterization C should be \stationary" in the sense that the characterization of a time-shifted

traÆc does not change with respect to that of the unshifted traÆc.

We show that the traÆc characterization provided by the burstiness de�nition that we propose here

satis�es all of the above properties. These properties facilitate a systematic analytical treatment of

performance guarantees in communication networks.

For our third motivation, we would like the burstiness de�nition that we come up with be such that

both the de�nition itself and its implications on performance guarantees could be viewed from the stand

point of relative frequency interpretation of probability. The burstiness de�nition that we propose here

has inherently this aspect.

The rest of the paper is organized as follows: Section 2 provides a background. Section 3 discusses

the notion of burstiness, and how we might want to perceive it. Section 4 introduces the new burstiness

de�nition. Sections 4.1 and 4.2 examine the implications of the new de�nition, by itself and for a single

network element, respectively. Section 4.2.1 gives the average performance guarantees for a single network

element. Section 4.3 examines the performance guarantees according to the new burstiness de�nition,

over a tandem of network elements. Section 5 provides some discussions about the new characterization.

Finally, section 6 gives conclusions.

2 Background and Convention

We adopt a discrete-time formulation for the simplicity of exposition. Time is slotted into �xed-length

intervals, and marked by the integers. The unit of transmission for communication is referred to as a

packet, in this study. A ow is a non-decreasing function de�ned from the integers to the non-negative

integers. The value R(n) of a ow R at time n denotes the total number of packets that has arrived by

time n (inclusive) for a connection. The rate-function r of a ow R is de�ned as

r(n) = R(n)�R(n� 1) for all n,
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which denotes the total number of packets that has arrived at time n. A network element is an input-

output device that accepts packets at its input, processes them, and delivers them at its output. A

network element is said to be passive if it does not generate any packet internally. Network elements are

assumed to be passive in this study, for the simplicity of exposition. Packets are assumed to be able to

instantaneously arrive and depart at a network element, i.e. a whole packet could arrive instantaneously

at time k, and depart later at time n where n > k. Note that a packet could depart in the same interval

in which it has arrived; this is sometimes referred to as cut-through operation. The capacity c(n) of a

network element at time n is the total number of packets that it could deliver (serve) at time n. The

function c is called the instantaneous capacity rate, or just the rate, of the network element.

We denote the set of all the integers by Z, and the set of all the positive integers by Z+. Given a

statement A which could be true or false, the notation [A] stands for 1 if A is true, and 0 otherwise.1 The

logical negation of a statement A is denoted by �A, i.e. if A is true, �A is false, and if A is false, �A is true.

Finally, all functions are assumed to be de�ned from the integers to the integers, unless otherwise noted

from here on.

For convenience, the end of proofs in the text are marked by ` ', and the end of examples are marked

by ` ', where both marks are ushed to the right margin.

We utilize the following de�nitions in this study, which have been previously introduced in the litera-

ture.

De�nition 1 Let f and g be any two functions. The min-+ convolution of f and g, denoted 2 as f g,

is de�ned as

(f g)(n) = min
k6n

ff(k) + g(n� k)g for all n.

The convolution f g is read as \f min-convolved with g", or as \the min-plus convolution of f with g".

Consider the problem of �nding a function X whose min-+ convolution with g is f , i.e. �nd an X such

that X g = f . One can proceed to �nd X as follows;

(X g)(n) = f(n)

min
k6n

fX(k) + g(n� k)g = f(n)

X(k) + g(n� k) > f(n) for all k 6 n

X(k) > f(n)� g(n� k) for all k 6 n

X(k) > max
n>k

ff(n)� g(n� k)g

= max
n>0

ff(n+ k)� g(n)g :

Hence, it is convenient to de�ne the min-+ deconvolution of two functions f and g as follows.

De�nition 2 Let f and g be two functions. The min-+ deconvolution of f and g, denoted as f g, is

de�ned as

(f g)(n) = max
k>0

ff(n+ k)� g(k)g for all n.

The deconvolution f g is read as \f min-deconvolved with g", or as \the min-plus deconvolution of f

with g"

A companion operator to the min-+ convolution is called the max-+ convolution, and de�ned as follows.

1We have adopted this notation from [13].
2
One reason to choose this notation over some others, for example `�', is that there are a companion and related other

operators to this operator, which are employed later in the work. We believe that this choice of notation provides a better

choice of notations for these other operators in a �tting manner.
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De�nition 3 Let f and g be two functions. The max-+ convolution of f and g, denoted as f g, is

de�ned as

(f g)(n) = max
k6n

ff(k) + g(n� k)g for all n.

The convolution f g is read as \f max-convolved with g", or as \the max-plus convolution of f with g".

Again, consider the problem of �nding a function X whose max-+ convolution with g is f ; that is,

�nd an X such that X g = f . One can proceed to �nd X as follows;

(X g)(n) = f(n)

max
k6n

fX(k) + g(n� k)g = f(n)

X(k) + g(n� k) 6 f(n) for all k 6 n

X(k) 6 f(n)� g(n� k) for all k 6 n

X(k) 6 min
n>k

ff(n)� g(n� k)g

= min
n>0

ff(n+ k)� g(n)g :

Hence, it is also convenient to de�ne the max-+ deconvolution of two functions f and g as follows.

De�nition 4 Let f and g be two functions. The max-+ deconvolution of f and g, denoted as f g, is

de�ned as

(f g)(n) = min
k>0

ff(n+ k)� g(k)g for all n.

The deconvolution f g is read as \f max-deconvolved with g", or as \the max-plus deconvolution of f

with g".

De�nition 5 An S-server with service curve S is a network element that when fed with an input ow R,

the corresponding output ow G satis�es

G(n) > (R S)(n) for all n

for any R. A service curve S is a non-decreasing function de�ned from the integers to the non-negative

integers, and takes on the value zero for non-positive values (i.e. S(n) = 0 for all n 6 0).

An S-server with equality is an S-server such that the inequality in de�nition 5 becomes an equality,

i.e. the output of an S-server with equality is given by G(n) = (R S)(n) for all n.

Note that a work-conserving3 server with the capacity of serving packets with a constant integer

rate � is an S-server with equality with service curve S(n) = maxf0; � � ng, since the output G of a

work-conserving server with an input ow R is given4 by

G(n) = min
k6n

fR(k) + � (n� k)g for all n

which could also be represented equivalently as

G(n) = (R S)(n) for all n.

3
A network element is said to be work-conserving if it serves packets whenever it has packets to serve, unconditionally of

any other criteria.
4This is often referred to as Reich's result [10]. See [11], for example, for a simple derivation.
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3 The Notion of Burstiness

The burstiness of an arrival process, roughly, has to do with the \proximity" of arrival instances to

each other, and also with the \variation" of arrival amounts from one arrival instance to another. A

burstiness de�nition in coming up with a traÆc characterization, tries to restrict these two aspects of

variations in arrivals, in a combined fashion so that some provable bounds on a speci�ed set of performance

metrics of interest could be given with ease. This is in general the case for both deterministic and

probabilistic de�nitions of burstiness, which could be followed for most of the burstiness de�nitions and

traÆc characterizations surveyed in [11].

A catch in the above paragraph is the phrase `so that some provable bounds on a speci�ed set of

performance metrics of interest could be given with ease'. A key view in coming up with a burstiness

de�nition with utility is to have a focus on some performance metrics of interest. This often implies that

one would base his/her perception of burstiness on the behavior of an arrival process through a network

element (which is typically a variant of a work-conserving server). In other words, one would tend to

perceive the burstiness of a traÆc from the perspective of a server (a network element).

A good example to this where this view is squarely placed at the heart of the de�nition is the

(�; �) model, which also leads to the concept of arrival curves in the general case, [1, 5]. A ow R

is said to be (�; �) constrained (or, (�; �) smooth) if it satis�es the following condition

R(n+ k)�R(k) 6 � + � � n for all k and n > 0.

Now, if a (�; �) constrained ow R is fed into a work-conserving server with constant rate �, it is not

diÆcult to show that the backlog Q(n) at any time n is upper bounded by �; let G be the corresponding

output ow, then

Q(n) = R(n)�G(n)

= R(n)�min
k6n

fR(k) + � � (n� k)g by the work-conserving server

= max
k6n

fR(n)�R(k)� � � (n� k)g

6 max
k6n

f� + � � (n� k)� � � (n� k)g by the characterization of R

= � :

A similar statement could also be given for a ow conforming to an arrival curve. A ow R is said to be

conformal to an arrival curve A (or, A smooth) if it satis�es the following condition

R(n+ k)�R(k) 6 A(n) for all k and n > 0,

where A is a non-decreasing function de�ned from the integers to the non-negative integers.

At �rst, this view of having some performance metrics of interest in focus, in coming up with a bursti-

ness de�nition, might not become apparent. Rather, one might be inclined towards giving a de�nition by

somehow comparing a traÆc by itself. An example to this is the following traÆc characterization that

we might suggest; a ow R is said to be proportionally constrained by �(n) if it satis�es the following

inequality
R(n+ k)�R(k)

maxfR(n+ l)�R(l); 1g
6 �(n) ;

for all k, l, and n, where (k; n+ k] and (l; n+ l] are non-overlapping intervals and their boundaries lie in

between some start and end time of ow R that we might easily de�ne.

Although such de�nitions may seem to be intuitive and natural at �rst sight, they do not necessarily

lend themselves very well to get bounds on some simple performance metrics. In other words, the bursti-

ness perceived by human eye, without taking into account any consideration regarding the behavior of
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Figure 1: Given a rate-function r(n) and a trim-o� level �, the trimmed rate-function r1(n) and the

trimmed-o� rate-function r2(n).

a traÆc through a server (a network element in general), does not necessarily suit well for performance

analysis, and is not necessarily the same as burstiness that one might perceive from the perspective of

a server. Said di�erently, bare human perception of burstiness does not necessarily incorporate simple

performance metrics (that we are interested in, in general, in performance analysis) in our cognition.

Thus, we choose to base our perception of burstiness of a ow on its behavior through a network

element, speci�cally on the queue size behavior.

3.1 Burstiness via Level-crossing

Given a ow R, consider its rate-function r. Let us trim r at a certain level �, as given below where the

trimmed rate-function is denoted by r1,

r1(n) = minfr(n); �g for all n.

Let us also consider the part of the rate-function which has been trimmed o�, i.e.

r2(n) = r(n)� r1(n) for all n.

Vaguely, we would tend to perceive that r2(n) is at least as bursty as r(n), and r1(n) is at most as bursty

as r(n), for some values of �. This could be viewed in Figure 1 where time-slots are drawn very close to

each other for convenience.

To put it more precisely, if we were to multiply both r1 and r2 by some constants a1 and a2, respectively,

such that the rate-functions ba1 � r1(n)c and da2 � r2(n)e would have the same average rates as r(n), and

feed r(n), ba1 � r1(n)c, and da2 � r2(n)e into identical network elements with labels 0, 1, and 2, respectively,

where the average rate that each network element serves packets is grater than that of its input, we would

observe for some values of � that the queue size behavior in network element 1 is less \erratic" than that

of 0, and the queue size behavior in network element 2 is more \erratic" than that of 0, considering the

entire duration of the observations.
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In other words, if we select r from a random sample space, and feed all three processes r, ba1 � r1(n)c,

and da2 � r2(n)e for each selection of r into network elements 0, 1, and 2, respectively, and observe the

queue size distributions; for some values of �, the decay rate of the tail of the queue size distribution

(i.e. the complementary cumulative distribution function of the queue size) in network element 1 is faster

that that of network element 0 after a certain queue size value, and it is slower in network element 2 than

that of network element 0 again after a certain queue size value.

So, it is the decay rate of the tail of the queue size distribution that we care about in deciding the

degree of burstiness of a ow with respect to another one, after some appropriate normalizations of the

ows as we have indicated above. The faster the decay rate is the less bursty the traÆc is, and vice versa.

More precisely, we could decide the burstiness of a traÆc source A with respect to another one B,

from the perspective of a network element of interest, as follows: Normalize the sources such that the

average rate of traÆc coming out of source A is equal to that of source B. Feed the traÆc coming out of

each source A and B into identical network elements � and �, respectively, where the average rate that

each network element serves packets is grater than that of its input. Observe the queue size distribution

in each network element � and �. If there exists a queue size level �0 beyond which the decay rate of the

tail of the queue size distribution in network element � is slower than that of network element �, then

source A is more bursty than source B.

Returning to the trimming of rate-function r, and in light of the above discussions, we might want

to lower bound the rate of the overshoot of r above each trim-o� level �, in an attempt to restrict its

burstiness. We might also consider to upper bound it as well.

However, recalling our perception of burstiness of a ow via the queue size behavior that it induces

on a network element, we might actually want to lower and/or upper bound the rate of the overshoot of

not r, but instead for example, maxf0; r(n) � �g, if the network element at hand is a work-conserving

server with constant rate �.

The lower-bound suggested above, in the case where the network element at hand is a work-conserving

server with constant rate �, could be expressed as follows;

L(�; n) 6
1

n

X
k<i6n+k

h
maxf0; r(i) � �g > �

i
:

Notice that above we would like to have the subscript `k < i 6 n+ k' of the sum as such, since we would

like to have a \stationary" characterization as we have indicated in the introduction.

It is not diÆcult to show that (which could be inferred from the proof of theorem 2 in getting the line

tagged (�) from the previous line there) the above lower-bound implies the following lower-bound on the

tail of the queue size distribution;

L(�; n) 6
1

n

X
k<i6n+k

[Q(i) > �] :

which also implies a lower-bound on the decay rate of the tail of the queue size distribution, and hence

on the burstiness of r.

The upper-bound that we have mentioned above could also be expressed as

1

n

X
k<i6n+k

h
maxf0; r(i) � �g > �

i
6 U(�; n) :

Notice that this bound would be of no use to get neither an upper-bound nor a lower-bound on the tail of

the queue size distribution as we have indicated above, in the case where the network element to which

the ow is fed is an S-server. Again, this could be inferred from the proof of theorem 2 in getting the line

tagged (�) from the previous line there.

However, again, recalling our perception of burstiness of a ow via the queue size behavior that it

induces on a network element, we might actually want to lower and/or upper bound the rate of overshoot

7



of the queue size itself directly, instead of a variant of the rate-function. With this view, we propose the

following de�nition of burstiness, and hence a traÆc characterization, in the following section where we

utilize an upper-bound as we have indicated above. As for a study regarding a lower-bound, we leave it

to a future work.

4 A Deterministic De�nition of Burstiness

With the discussions and motivations given in section 3, we propose the following de�nition of burstiness,

and hence a traÆc characterization.

De�nition 6 A traÆc ow R is said to be bursty with service curve S and level-crossing function U(�; n),

and denoted as R � (S;U), if

1

n

X
k<i6n+k

h
R(i)�R(j) > S(i� j) + �; for some j < i

i
6 U(�; n) (1)

for all k, n > 0, and �, where U(�; n) is de�ned from Z� Z+ to the non-negative real numbers.

We assume that the following properties hold for any level-crossing function U(�; n), without loss of

generality:

1. U(�; n) is non-increasing in �, since the quantity corresponding to a � on the left-hand-side of

inequality (1) is non-increasing with �.

2. Clearly, U(�; n) 6 1 for any � and n > 0. Furthermore, we assume for mathematical convenience

that U(�; n) = 1 for all � < 0 and for any n > 0, unless otherwise noted from here on.

3. lim�!1 U(�; n) = 0 for any n > 0 (this is certainly the case if ow R is bounded, which we could

always assume without loss of generality for almost all practical purposes).

In the rest of this section, we examine some of the properties/implications of de�nition 6. Speci�cally,

we will show that it satis�es all the properties of a traÆc characterization that we have sought to have as

stated earlier in the introduction.

4.1 Implications on Aggregate Flows and Average Rate

We �rst show that the traÆc characterization provided by de�nition 6 satis�es the property 1 of a traÆc

characterization that we have sought to have as stated in the introduction. That is, we show that the

aggregate of ows where each ow is characterized according to this characterization could also be easily

characterized by the same characterization. This is stated more precisely in the following theorem, and

proved thereafter.

Theorem 1 Let R1 and R2 be two ows that R1 � (S1; U1) and R2 � (S2; U2). The aggregate ow R1+R2

is bursty with service curve S1 + S2 and level-crossing function U1 U2 where the convolution is carried

out over the �rst arguments (i.e. �) of Ui's. In other words, R1 +R2 � (S1 + S2; U1 U2) .

Let us adopt a convention from here on that whenever we refer to a min-+ convolution of any two bivariate

functions, we mean the min-+ convolution carried out over their �rst arguments.

Proof: The proof follows by considering the following statements for any k, n > 0, i that k < i 6 n+ k,

�, and u 6 �;

A : (R1 +R2)(i)� (R1 +R2)(j) > (S1 + S2)(i � j) + �; for some j < i

A1 : R1(i)�R1(j) > S1(i� j) + u; for some j < i

A2 : R2(i)�R2(j) > S2(i� j) + � � u; for some j < i.
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Notice that A) (A1 OR A2) , since clearly ( �A1 AND �A2)) �A1. Thus, we have

[A] 6 [A1 OR A2]

6 [A1] + [A2] :

Since the above inequality holds for any k, n > 0, i that k < i 6 n + k; and since R1 � (S1; U1) and

R2 � (S2; U2), we also have

1

n

X
k<i6n+k

[A] 6 U1(u; n) + U2(� � u; n) :

Furthermore, since the last inequality holds for any u 6 �, we get

1

n

X
k<i6n+k

[A] 6 min
u6�

fU1(u; n) + U2(� � u; n)g

= (U1 U2)(�; n) :

One might think that we would have had to use in�mum `inf' above instead of minimum `min', since Ui's

are real-valued. However, it turns out that this is not the case since the above minimum is e�ectively

taken over a set of �nite number of elements due to the fact that Ui(s; n) = 1 for all s < 0 and for

any n > 0, for i equals to both 1 and 2. Moreover, since lim�!1 U(�; n) = 0 for any U , note that we

have (U1 U2)(�; n) = 1 for all � < 0 and n > 0.5 This completes the proof.

The burstiness characterization provided by de�nition 6 has also an implication on the long-term

average rate of a ow. This is stated in the following theorem, and proved thereafter. Before we give

that, however, we would like to provide the following lemma.

Lemma 1 There holds for any non-negative real number a that

a =

Z
1

0

[a > x] dx :

Proof: The proof follows by the following simple manipulation;

Z
1

0

[a > x] dx =

Z a�

0

[a > x] dx+

Z
1

a

[a > x] dx

=

Z a�

0

1 dx+

Z
1

a

0 dx

= a :

The discrete-time version of the above lemma is given below

a =

1X
n=0

[a > n]

where a is any non-negative integer, whose proof also follows similarly.6

5
This is why we have assumed for mathematical convenience that a level-crossing function in burstiness de�nition 6

satis�es U(s; n) = 1 for all s < 0 and n > 0.
6
In general, we have

a =

Z
0

�1

[a < x] dx+

Z
1

0

[a > x] dx ;

where a is any real number.
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Theorem 2 Given a ow R � (S;U), the long-term average rate � of ow R satis�es

� = lim sup
(n�k)!1

R(n)�R(k)

n� k
6 lim sup

n!1

S(n)

n
+ lim sup

n!1

X
�>0

U(�; n) :

Proof: Let � � lim sup
n!1

S(n)

n
:

The proof follows by considering the total number of packets R(n) � R(k) that would arrive in any

interval (k; n], and upper bounding it as;

R(n)�R(k) =
X

k<i6n

r(i)

=
X

k<i6n

Z
1

0

[r(i) > �] d�

=

Z
1

0

X
k<i6n

[r(i) > �] d�

=

Z �

0

X
k<i6n

[r(i) > �] d� +

Z
1

�

X
k<i6n

[r(i) > �] d�

6

Z �

0

X
k<i6n

1 d� +

Z
1

�

X
k<i6n

[r(i) > �] d�

=

Z �

0

(n� k) d� +

Z
1

0

X
k<i6n

[r(i) > �+ �] d�

= � � (n� k) +

Z
1

0

X
k<i6n

[r(i) > �+ �] d�

6 � � (n� k) +

Z
1

0

X
k<i6n

[R(i)�R(j) > � � (i� j) + �; for some j < i] d� (�)

6 � � (n� k) +

Z
1

0

X
k<i6n

[R(i)�R(j) > S(i� j) + �; for some j < i] d�

6 � � (n� k) +

1X
�=0

X
k<i6n

[R(i)�R(j) > S(i� j) + �; for some j < i]

6 � � (n� k) +

1X
�=0

U(�; n� k) � (n� k) :

10



Hence, we get

� = lim sup
(n�k)!1

R(n)�R(k)

n� k

6 lim sup
(n�k)!1

� � (n� k) +
P
1

�=0 U(�; n� k) � (n� k)

n� k

= lim sup
(n�k)!1

 
�+

1X
�=0

U(�; n� k)

!

= �+ lim sup
(n�k)!1

1X
�=0

U(�; n� k)

= �+ lim sup
n!1

1X
�=0

U(�; n)

= lim sup
n!1

S(n)

n
+ lim sup

n!1

1X
�=0

U(�; n)

Example 1 For service curves of the form S(n) = maxf0; �(n � D)g, the long-term average rate �

of R � (S;U) is upper bounded by

�+ lim sup
n!1

1X
�=0

U(�; n) :

Whenever we refer to a service curve of the form S(n) = maxf0; �(n�D)g, we assume � to be a positive

integer, and D to be a non-negative �nite integer, just for the sake of simplicity. We could have also

adopted that S(n) = maxf0; b�(n�D)cg, however that would have cluttered the arguments in examples.

In the following section, we study the implications of de�nition 6 for an S-server, whereby we show

some of the other properties of this characterization pursuant to the properties of a traÆc characterization

that we have sought to have as stated earlier in the introduction.

4.2 Implications for an S-server

If a ow R � (S;U) is fed into an S-server, the queue size Q at the server is also similarly upper bounded

by U . This is stated more precisely in the following theorem, and proved thereafter. The queue size Q(n) is

the total number of packets which resides in the server at time n; that is, if R and G denote the aggregates

of the ows at the input and at the output of the server, respectively, then Q(n) = R(n)�G(n).

Theorem 3 If an input ow R � (S;U) is fed into an S-server with service curve S, then the queue

size Q at the server satis�es
1

n

X
k<i6n+k

[Q(i) > �] 6 U(�; n)

for all k, n > 0, and �.

11



Proof: Let the corresponding output ow be denoted by G. The proof follows by considering the

following statements and their evaluations for any k, n > 0, i that k < i 6 n+ k, and �;

[Q(i) > �] = [R(i)�G(i) > �]

6

�
R(i)�min

j6i
fR(j) + S(i� j)g > �

�
(�)

=

�
max
j6i

fR(i)�R(j)� S(i� j)g > �

�

=
h
R(i)�R(j)� S(i� j) > �; for some j < i

i
=
h
R(i)�R(j) > S(i� j) + �; for some j < i

i

hence, we get

1

n

X
k<i6n+k

[Q(i) > �] 6
1

n

X
k<i6n+k

h
R(i)�R(j) > S(i� j) + �; for some j < i

i
(�)

6 U(�; n) :

Notice that this result could in fact be used to measure a level-crossing function U of an input traÆc R

for any given service curve S. To do this, we would need to have an S-server with equality (note the

de�nition given right after the de�nition of an S-server). Then, upon feeding a ow R into a such S-

server, we would observe the queue size Q at the server. The supremum of the empirical values of the

quantity on the left-hand-side of the inequality in theorem 3 would give the tightest (i.e. the smallest)

possible level-crossing function U in characterizing the ow R as R � (S;U). This is facilitated by the

fact that when we have an S-server with equality, the relations in lines tagged (�) above in the proof of

the theorem 3 become an equality.

Given a ow R with unknown characterization according to de�nition 6, we can �nd a characterization

of it by utilizing theorem 2 and theorem 3, if the long-term average rate � of R is know|it is often not

diÆcult to get a fairly good approximation of long-term average rate of a ow by a variant of the Law

of Large Numbers. By theorem 2, we could pick a service curve S that lim supn!1
S(n)
n

> �. Thus,

service curve S(n) = maxf0; d�e � ng is a good candidate to �nd a characterization of R according to

de�nition 6, as well as service curves of the from S(n) = maxf0; d�e (n �D)g. Then, by theorem 3 and

the discussions given in the previous paragraph, we could �nd a tight level-crossing function U to complete

the characterization.

The output ow of an S-server fed by a ow R � (S;U) could also be easily characterized according

to de�nition 6. This is stated in the following theorem, and proved thereafter.

Theorem 4 The output ow G of an S-server with service curve S, fed by a ow R � (S;U), is bursty

with service curve S S and the level-crossing function U . In other words, G � (S S;U).

12



Proof: The proof follows by considering the following statements and their evaluations for any k, n > 0,

i that k < i 6 n+ k, j < i, and �;h
G(i) �G(j) > (S S)(i� j) + �

i
6

h
G(i) � (R S)(j) > (S S)(i� j) + �

i
6

h
R(i)� (R S)(j) > (S S)(i� j) + �

i
=

�
R(i)�min

h6j
fR(h) + S(j � h)g > (S S)(i � j) + �

�

=

�
max
h6j

fR(i) �R(h)� S(j � h)g > (S S)(i� j) + �

�

=
h
R(i)�R(h)� S(j � h) > (S S)(i� j) + �; for some h 6 j

i
=
h
R(i)�R(h) > (S S)(i� j) + S(j � h) + �; for some h 6 j

i
6

h
R(i)�R(h) > S(i� h)� S(j � h) + S(j � h) + �; for some h 6 j

i
=
h
R(i)�R(h) > S(i� h) + �; for some h 6 j

i
=
h
R(i)�R(h) > S(i� h) + �; for some h 6 j < i

i
6

h
R(i)�R(h) > S(i� h) + �; for some h < i

i
:

Taking the logical ` OR ' of the statements appearing on either side in the last line above, over all j < i

(note that the logical ` OR ' of the statement on the right-hand-side is just equal to itself), we get

h
G(i) �G(j) > (S S)(i� j) + �; for some j < i

i
6h
R(i)�R(h) > S(i� h) + �; for some h < i

i
:

Hence, we obtain the desired result as shown below, by appropriate summations and divisions;

1

n

X
k<i6n+k

h
G(i)�G(j) > (S S)(i � j) + �; for some j < i

i
6

1

n

X
k<i6n+k

h
R(i)�R(h) > S(i� h) + �; for some h < i

i

6 U(�; n)

We might actually need to slightly rectify the above result by replacing the service curve S S in

characterizing the output ow, by So given below

So(n) =

(
0 if n 6 0

(S S)(n) else.

We would like to have this recti�cation for two reasons: (1) A service curve is de�ned to take on the value

zero for non-negative values of its argument. (2) We would only need to have S S for positive values of

its argument (as this could be noted from the �rst line of the proof of the above result). We have not

done this recti�cation in the body of the theorem in order not to clutter the result.

Example 2 For service curves of the form S(n) = maxf0; �(n�D)g, the min-+ deconvolution of S with

itself is equal to maxf0; � � ng; whereby also note that for service curves of the form S(n) = maxf0; � � ng

(i.e. when D = 0), the deconvolution of S with itself is equal to itself.
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The burstiness characterization provided by de�nition 6 has also an implication on the virtual-delay

at an S-server. Virtual-delay, which has been previously introduced in the literature, is de�ned below.

De�nition 7 The virtual-delay D(n) at any time n for an input ow R at a network element is de�ned

as

D(n) = minfÆ : Æ > 0; G(n+ Æ) > R(n)g

where G is the corresponding output ow.

The virtual-delay D(n) is basically the delay experienced by the packets arriving at time n, through the

network element, if the packets are to be served in the order in which they have arrived.

Theorem 5 If a ow R � (S;U) is fed into an S-server with service curve S, then the virtual-delay D(n)

at the server satis�es
1

n

X
k<i6n+k

[D(i) > �] 6 U
�
(S S)(�); n

�
for all k, n > 0, and �.

Proof: The proof follows by considering the following statements and their evaluations for any k, n > 0,

i that k < i 6 n+ k, and �;

[D(i) > �] = [G(i+ �) < R(i)]

6
�
(R S)(i+ �) < R(i)

�
=
�
R(i)� (R S)(i+ �) > 0

�
=

�
R(i)� min

j6i+�
fR(j) + S(i+ � � j)g > 0

�

=

�
max
j6i+�

fR(i)�R(j)� S(i+ � � j)g > 0

�

=
h
R(i)�R(j) � S(i+ � � j) > 0; for some j < i

i

(note that a j above can not be greater than or equal to i, since in that case the left-hand-side of the

inequality could not become positive)

=
h
R(i)�R(j) > S(i+ � � j); for some j < i

i
=
h
R(i)�R(j) > S(i� j) + S(i� j + �)� S(i� j); for some j < i

i
(�)

6

h
R(i)�R(j) > S(i� j) + (S S)(�); for some j < i

i

hence, by appropriate summations and divisions, and applying the burstiness characterization of R, we

obtain the desired result as shown below;

1

n

X
k<i6n+k

[D(i) > �] 6
1

n

X
k<i6n+k

h
R(i)�R(j) > S(i� j) + (S S)(�); for some j < i

i

6 U
�
(S S)(�); n

�
:
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We could actually slightly improve the above result. This could be done if we would replace the

subscript `k > 0' in taking the max-+ deconvolution of S with itself by `k > 0', as it could be noted by

the line tagged (�) in the derivation of the above result, since in that line we have `j < i'.

This result could in fact be further improved if we set a time origin for ows. That is; if we assume

for almost all practical purposes that ow R satis�es R(�1) = 0, i.e. there is a certain point in time

before which no packet has arrived in ow R, and call that point as the origin (i.e. n = 0), then we could

replace `(S S)(�)' in the above result by

min
0<u6(n+k)

fS(u+ �)� S(u)g

which is greater than or equal to (S S)(�). This again could be noted by the line tagged (�) in the

derivation. However, if we do that, we would obtain a more time-dependent result (i.e. the �rst argument

of the level-crossing function on the right-hand-side of the inequality in theorem 5 also depends on time n),

whereas the result we have here is less time-dependent.

Example 3 For service curves of the form S(n) = maxf0; �(n�D)g, the max-+ deconvolution of S with

itself is given by

(S S)(n) =

8><
>:
�� � n if n < 0

0 if 0 6 n < D

� � (n�D) else

which is also equal to minf� � n; S(n)g if we were to express it more compactly. Hence for service curves

of this form, the bound on the distribution of the virtual-delay D(n) is given by7

U
�
(S S)(�); n

�
=

8><
>:
1 if � < 0

U(0; n) if 0 6 � < D

U(� (� �D); n) else.

These results with a little bit of more work, facilitate a systematic treatment of performance guarantees

in tandem networks analytically. This is the subject of a later section.

4.2.1 Average Performance Guarantees at an S-server

It immediately follows by the results in section 4.2 that we could also give average performance guarantees

at an S-server with the burstiness characterization provided by de�nition 6. Speci�cally, by theorems 3

and 5, we could see that time-averaged virtual-delay and backlog are also bounded. These are pointed

out by the following corollaries.

Corollary 1 If an input ow R � (S;U) is fed into an S-server with service curve S, the average queue

size Q(n) at the server is upper bounded as

1

n� k

X
k<i6n

Q(i) 6

1X
�=0

U(�; n� k) for all k < n,

and hence, the long-term average queue size is upper bounded as

lim sup
(n�k)!1

1

n� k

X
k<i6n

Q(i) 6 lim sup
n!1

1X
�=0

U(�; n) :

7
With the �rst improvement that we have mentioned before, we could actually replace `D' by `D�1', and obtain a tighter

bound on the distribution of the virtual-delay.
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Proof: The proof follows immediately by theorem 3, as shown below; it holds for all k < n thatX
k<i6n

Q(i) =
X

k<i6n

X
�>0

[Q(i) > �]

=
X
�>0

X
k<i6n

[Q(i) > �]

6
X
�>0

(n� k)U(�; n� k)

dividing both sides by n� k, we get

1

n� k

X
k<i6n

Q(i) 6
X
�>0

U(�; n� k) :

Consequently, the long-term average queue size is upper bounded as

lim sup
(n�k)!1

1

n� k

X
k<i6n

Q(i) 6 lim sup
n!1

1X
�=0

U(�; n) :

Note that, given a ow R � (S;U) where U is the tightest possible level-crossing function, if the area

under U is not �nite for some n (i.e. the sum
P
1

�=0 U(�; n) = 1 for some n), then when ow R is fed

into an S-server with equality (note the de�nition given right after the de�nition of an S-server), the the

long-term average queue size becomes unbounded.

Similarly, the time-averaged virtual-delay is also upper bounded, which is given below by the following

corollary.

Corollary 2 If an input ow R � (S;U) is fed into an S-server with service curve S, the average

virtual-delay D(n) at the server is upper bounded as

1

n� k

X
k<i6n

D(i) 6

1X
�=0

U
�
(S S)(�); n� k

�
for all k < n,

and hence, the long-term average virtual-delay is upper bounded as

lim sup
(n�k)!1

1

n� k

X
k<i6n

D(i) 6 lim sup
n!1

1X
�=0

U
�
(S S)(�); n

�
:

Proof: The proof follows immediately by theorem 5, as shown below; it holds for all k < n thatX
k<i6n

D(i) =
X

k<i6n

X
�>0

[D(i) > �]

=
X
�>0

X
k<i6n

[D(i) > �]

6
X
�>0

(n� k)U
�
(S S)(�); n � k

�

dividing both sides by n� k, we get

1

n� k

X
k<i6n

D(i) 6

1X
�=0

U
�
(S S)(�); n� k

�
:

16



Consequently, the long-term average queue size is upper bounded as

lim sup
(n�k)!1

1

n� k

X
k<i6n

D(i) 6 lim sup
n!1

1X
�=0

U
�
(S S)(�); n � k

�
:

Example 4 For service curves of the form S(n) = maxf0; �(n �D)g, we have pointed out earlier what

U
�
(S S)(�); n

�
would be in example 3. So, for service curves of this form, the average virtual-delay D(n)

at an S-server is upper bounded by the above corollary as

lim sup
(n�k)!1

1

n� k

X
k<i6n

D(i) 6 lim sup
n!1

1X
�=0

U
�
(S S)(�); n

�

= D � lim sup
n!1

U(0; n) + lim sup
n!1

1X
�=D

U(�(� �D); n)

= D � lim sup
n!1

U(0; n) + lim sup
n!1

1X
�=0

U(� � �; n) :

Since, U(�; n) 6 1 for all � and n > 0, we also have

lim sup
(n�k)!1

1

n� k

X
k<i6n

D(i) 6 D + lim sup
n!1

1X
�=0

U(� � �; n) :

4.3 Performance Guarantees Over A Tandem of Network Elements

Performance guarantees over a tandem of network elements, in the framework of de�nition 6, follow almost

directly from the results in section 4.2 where implications of the burstiness characterization provided by

de�nition 6 is studied for an S-server. In order to discover such performance guarantees, we would need to

generalize the results in section 4.2, slightly. These generalizations are realized when we consider feeding

a ow characterized according to de�nition 6 with service curve S�, into an S-server with service curve S

where S is not necessarily equal to S�. In the following subsection, we provide these generalizations.

The results in this section could further be improved slightly if we pay a close attention to some of the

variables, as we have just pointed out earlier after the proof of theorem 5. However, doing that would

clutter the exposure of the results, hence we have chosen not to do this in this paper. Such improvements

could be followed similarly as presented in the corresponding section in [12].

4.3.1 Generalized Implications for an S-server

Derivations to obtain the results in this section are similar to those of section 4.2, and can be followed in

parallel. Some of the explanations that might be needed further for the results in this section could be

found in section 4.2 where corresponding results are provided.

Theorem 6 If an input ow R � (S�; U) is fed into an S-server with service curve S, the queue size Q

at the server satis�es
1

n

X
k<i6n+k

[Q(i) > �] 6 U
�
(S S�)(0) + �; n

�
for all k, n > 0, and �.
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Proof: Let the corresponding output ow be denoted by G. The proof follows by considering the

following statements and their evaluations for any k, n > 0, i that k < i 6 n+ k, and �;

[Q(i) > �] = [R(i)�G(i) > �]

6

�
R(i)�min

j6i
fR(j) + S(i� j)g > �

�

=

�
max
j6i

fR(i)�R(j)� S(i� j)g > �

�

=
h
R(i)�R(j) � S(i� j) > �; for some j < i

i
=
h
R(i)�R(j) > S(i� j) + �; for some j < i

i
=
h
R(i)�R(j) > S�(i� j) + S(i� j)� S�(i� j) + �; for some j < i

i
6

h
R(i)�R(j) > S�(i� j) + (S S�)(0) + �; for some j < i

i

hence, we get

1

n

X
k<i6n+k

[Q(i) > �] 6
1

n

X
k<i6n+k

h
R(i)�R(j) > S�(i� j) + (S S�)(0) + �; for some j < i

i

6 U
�
(S S�)(0) + �; n

�
Note that if service curve S of the S-server is greater than or equal to S� of the ow at every point in

time, then the bound on the queue size distribution becomes U(�; n).

Example 5 For service curves of the form

S�(n) = maxf0; ��(n�D�)g

S(n) = maxf0; �(n �D)g

note the following calculations:

1. If �� > �, then we have (S S�)(0) = �1. Hence, the bound of the queue size as given in theorem 6

becomes 1, and no use. Thus, one assume for practical purposes that �� 6 �.

2. For �� 6 �, if D� > D, then (S S�)(0) = 0. In this case, the bound of the queue size as given in

theorem 6 becomes equal to U(�; n).

3. For �� 6 � and D� < D, we have (S S�)(0) = ���(D �D�). Hence, the bound of the queue size

as given in theorem 6 becomes equal to U(� � ��(D �D�); n).

The generalized result for the output ow of an S-server fed by a ow R � (S�; U) is given below. We

would again leave the recti�cation of the service curve in the characterization of the output ow after the

theorem, as we have done before for the corresponding result in theorem 4.

Theorem 7 The output ow G of an S-server with service curve S, fed by a ow R � (S�; U), is bursty

with service curve S� S and the level-crossing function U . In other words, G � (S� S;U).
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Proof: The proof follows by considering the following statements and their evaluations for any k, n > 0,

i that k < i 6 n+ k, j < i, and �;h
G(i)�G(j) > (S� S)(i� j) + �

i
6

h
G(i) � (R S)(j) > (S� S)(i� j) + �

i
6

h
R(i)� (R S)(j) > (S� S)(i� j) + �

i
=

�
R(i)�min

h6j
fR(h) + S(j � h)g > (S� S)(i� j) + �

�

=

�
max
h6j

fR(i)�R(h)� S(j � h)g > (S� S)(i� j) + �

�

=
h
R(i)�R(h)� S(j � h) > (S� S)(i� j) + �; for some h 6 j

i
=
h
R(i)�R(h) > (S� S)(i� j) + S(j � h) + �; for some h 6 j

i
6

h
R(i)�R(h) > S�(i� h)� S(j � h) + S(j � h) + �; for some h 6 j

i
=
h
R(i)�R(h) > S�(i� h) + �; for some h 6 j

i
=
h
R(i)�R(h) > S�(i� h) + �; for some h 6 j < i

i
6

h
R(i)�R(h) > S�(i� h) + �; for some h < i

i
:

Taking the logical ` OR ' of the statements appearing on either side in the last line above, over all j < i

(note that the logical ` OR ' of the statement on the right-hand-side is just equal to itself), we get

h
G(i) �G(j) > (S� S)(i� j) + �; for some j < i

i
6h
R(i)�R(h) > S�(i� h) + �; for some h < i

i
:

Hence, we obtain the desired result as shown below, by appropriate summations and divisions;

1

n

X
k<i6n+k

h
G(i)�G(j) > (S� S)(i� j) + �; for some j < i

i
6

1

n

X
k<i6n+k

h
R(i)�R(h) > S�(i� h) + �; for some h < i

i

6 U(�; n)

We might again need to slightly rectify the above result by replacing the service curve S� S in

characterizing the output ow, by So given below

So(n) =

(
0 if n 6 0

(S� S)(n) else.

We would like to have this recti�cation by the same reasons given for the corresponding recti�cation done

after theorem 4.

Example 6 For service curves of the form

S�(n) = maxf0; ��(n�D�)g

S(n) = maxf0; �(n �D)g

note the following calculations:
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1. If �� > �, regardless of the values of D� andD, (S� S)(n) becomes in�nite for any positive n. In this

case, the result we have here does not provide any useful information for burstiness characterization

of the output ow, since in that case its bounding function could be set as U(�; n) = 0 for all � > 0

and for all n > 0, without loss of generality. Thus, we can assume for practical purposes that �� 6 �.

2. With this assumption, regardless of the values of D� and D, we have

(S� S)(n) = min
�
0; ��(n� (D� �D))

	
for all n.

Note however that the shape of So will be di�erent for D
� > D and D� < D.

The generalized result for virtual-delays experienced at an S-server fed by a ow R � (S�; U) is given

below. The de�nition of virtual delay is given by de�nition 7.

Theorem 8 If a ow R � (S�; U) is fed into an S-server with service curve S, then the virtual-delay D(n)

at the server satis�es
1

n

X
k<i6n+k

[D(i) > �] 6 U
�
(S S�)(�); n

�
for all k, n > 0, and �.

Proof: The proof follows by considering the following statements and their evaluations for any k, n > 0,

i that k < i 6 n+ k, and �;

[D(i) > �] = [G(i + �) < R(i)]

6
�
(R S)(i+ �) < R(i)

�
=
�
R(i)� (R S)(i+ �) > 0

�
=

�
R(i)� min

j6i+�
fR(j) + S(i+ � � j)g > 0

�

=

�
max
j6i+�

fR(i)�R(j) � S(i+ � � j)g > 0

�

=
h
R(i)�R(j)� S(i+ � � j) > 0; for some j < i

i

(note that a j above can not be greater than or equal to i, since in that case the left-hand-side of the

inequality could not become positive)

=
h
R(i)�R(j) > S(i+ � � j); for some j < i

i
=
h
R(i)�R(j) > S�(i� j) + S(i� j + �)� S�(i� j); for some j < i

i
6

h
R(i)�R(j) > S(i� j) + (S S�)(�); for some j < i

i
hence, by appropriate summations and divisions, and applying the burstiness characterization of R, we

obtain the desired result as shown below;

1

n

X
k<i6n+k

[D(i) > �] 6
1

n

X
k<i6n+k

h
R(i)�R(j) > S(i� j) + (S S�)(�); for some j < i

i

6 U
�
(S S�)(�); n

�
:
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Example 7 For service curves of the form

S�(n) = maxf0; ��(n�D�)g

S(n) = maxf0; �(n �D)g

note the following calculations:

1. If �� > �, then we have (S S�)(�) = �1 for any � > 0. Hence, the bound of the virtual-delay as

given in theorem 8 becomes 1, and no use. Thus, one assume for practical purposes that �� 6 �.

2. For �� 6 �, if D� > D, then (S S�)(�) = S(�). In this case, the bound on the virtual-delay as

given in theorem 8 becomes U(S(�); n).

3. For �� 6 � and D� < D, we have for � > 0

if � 6 D �D� (S S�)(�) = ���(D �D� � �)

if � > D �D� (S S�)(�) = S(�) :

Hence, the bound on the virtual-delay as given in theorem 8 becomes

for � 6 D �D� U
�
(S S�)(�); n

�
=

(
1 if � < D �D�

U(0; n) if � = D �D�

for � > D �D� U
�
(S S�)(�); n

�
= U

�
S(�); n

�
=

(
U(0; n) if � < D

U
�
�(� �D); n

�
else.

All of the theorems in this section essentially facilitate a systematic analytical treatment of performance

guarantees over a tandem of network elements. To further clarify this, we provide the results in the

following subsection.

4.3.2 Considering a Tandem of Network Elements

In order to clarify the claimed systematic treatment of performance guarantees over a tandem of network

elements, we would like to give the following two lemmas and three corollaries.

Lemma 2 Let f , g, and h be any three functions. The following inequality holds

((f g) h)(n) 6 (f (g h))(n) for all n.

Proof: The proof follows directly from the de�nitions of min-+ deconvolution and min-+ convolution,

and is given below. It holds for all n that

((f g) h)(n) = max
k>0

f(f g)(n+ k)� h(k)g

= max
k>0

n
max
l>0

�
f(n+ k + l)� g(l)

	
� h(k)

o
= max

k>0

n
max
l>0

�
f(n+ k + l)� g(l)� h(k)

	o
= max

k>0
l>0

�
f(n+ k + l)� (g(l) + h(k))
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notice that for all k and l such that k + l would remain the same, f(n+ k + l) does not change its value

for any given n, hence the maximum above for that �xed value of k+ l will occur for the minimum value

of g(l) + h(k) over all such k's and l's; that is, we have

= max
k+l>0

n
f(n+ k + l)� min

06u6k+l

�
g(u) + h(k + l � u)

	o
6 max

k+l>0

n
f(n+ k + l)� min

u6k+l

�
g(u) + h(k + l � u)

	o
= max

k+l>0

�
f(n+ k + l)� (g h)(k + l)

	
= max

u>0

�
f(n+ u)� (g h)(u)

	
= (f (g h))(n) :

Lemma 3 Let f , g, and h be any three functions. The following inequality holds

(f (g h))(n) > ((f h) g)(n) for all n.

Proof: The proof follows directly from the de�nitions of max-+ and min-+ deconvolutions, and is given

below. It holds for all n that

(f (g h))(n) = min
k>0

ff(n+ k)� (g h)(k)g

= min
k>0

n
f(n+ k)�max

l>0

�
g(k + l)� h(l)

	o
= min

k>0

n
f(n+ k) +min

l>0

�
� g(k + l) + h(l)

	o
= min

k>0
l>0

�
f(n+ k)� g(k + l) + h(l)

	
= min

k>0
l>0

�
f(n+ k) + h(l)� g(k + l)

	

notice that for all k and l such that k+ l would remain the same, g(k+ l) does not change its value, hence

the minimum above for that �xed value of k+ l will occur for the minimum value of f(n+ k) + h(l) over

all such k's and l's; that is, we have

= min
k+l>0

n
min

06u6n+k+l

�
f(n+ k + l � u) + h(u)g � g(k + l)

o
> min

k+l>0

n
min

u6n+k+l

�
f(n+ k + l � u) + h(u)g � g(k + l)

o
= min

k+l>0

�
(f h)(n+ k + l)� g(k + l)

	
= min

u>0

�
(f h)(n+ u)� g(u)

	
= ((f h) g)(n) :

The next result is a corollary of theorem 1.

Corollary 3 Let Z1 and Z2 be two processes that

1

n

X
k<i6n+k

[Zj(i) > �] 6 Uj(�; n) for all k, n > 0, �, and for j equals to both 1 and 2

22



where functions Uj's are as speci�ed after de�nition 6. The following relation holds

1

n

X
k<i6n+k

[(Z1 + Z2)(i) > �] 6 (U1 U2)(�; n) for all k, n > 0, and �,

where the convolution above is carried out over the �rst arguments (i.e. �) of Uj's.

Proof: The proof follows immediately by theorem 1. This could be seen from its proof if we were to

shovel the terms involving service curves appearing in the de�nitions of the statements A and Aj 's to

the other side of the inequalities, and view the left-hand-side of those inequalities as Z1 + Z2 and Zj 's,

respectively.

We now give the main result of this section, stated next as a corollary.

Corollary 4 Let a ow R1 � (S�; U) be fed into an S-server with service curve S1. And let the output R2

of this �rst server be fed into another S-server with service curve S2. The following statements hold:

1. The output ow R3 of the S-server with service curve S2 is bursty with service curve S3 and level-

crossing function U , where

S3(n) =

(
0 if n 6 0

(S� (S1 S2)) else.

In other words, R3 � (S3; U).

2. The total number of packets, Q1(n) +Q2(n), stored in the tandem network satis�es

1

n

X
k<i6n+k

[(Q1 +Q2)(i) > �] 6 (g h)(�; n)

for all k, n > 0, and �, where

g(�; n) = U
�
(S1 S�)(0) + �; n

�
h(�; n) = U

�
(S2 (S� S1))(0) + �; n

�
= U

�
((S1 S2) S�)(0) + �; n

�
:

3. The total virtual-delay, D1(n) + D2(n + Æ(n)), experienced by a packet arriving at any time n at

the �rst network element, and at time n+ Æ(n) for some Æ(n) > 0 at the second network element,

satis�es for any Æ(n) > 0

1

n

X
k<i6n+k

[D1(i) +D2(i+ Æ(i)) > �] 6 (g h)(�; n)

for all k, n > 0, and �, where

g(�; n) = U
�
(S1 S�)(�); n

�
h(�; n) = U

�
(S2 (S� S1))(�); n

�
= U

�
((S1 S2) S�)(�); n

�
:

Proof: The proof of

� statement 1 follows by theorem 7 and lemma 2, where notice for lemma 2 that the inequality in the

lemma becomes an equality since S1 and S2 here are service curves;
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� statement 2 follows by corollary 3, theorem 6, and lemma 3, where notice for lemma 3 that the

inequality in the lemma becomes an equality since S1 and S2 here are service curves;

� statement 3 follows by corollary 3, theorem 8, and lemma 3, where again notice for lemma 3 that the

inequality in the lemma becomes an equality since S1 and S2 here are service

curves.

We could actually slightly improve the above results in items 2 and 3 in corollary 4, and further

emphasize the message that we are trying to convey by corollary 4. It is not diÆcult to show that the

bounds that would be obtained by replacing (g h)(�; n) in items 2 and 3 in corollary 4 by h(�; n), also

hold. This is given as a corollary next, for which we give the following lemmas �rst.

Both of the lemmas are on the properties of min-+ convolution. The �rst one is on the monotonicity

of the min-+ convolution, and is given below.

Lemma 4 Let f , g, and h be any there functions that f(n) 6 h(n) for all n. There holds

(f g)(n) 6 (h g)(n) for all n.

Proof: The proof follows immediately from the de�nition of min-+ convolution, and is given below for

the sake of completeness; it holds for all n that

(f g)(n) = min
k6n

ff(k) + g(n� k)g

6 min
k6n

fh(k) + g(n� k)g

= (h g)(n) :

The second one is on the associativity of the min-+ convolution, and is given below.

Lemma 5 Let f , g, and h be any there functions. There holds

((f g) h)(n) > (f (g h))(n) for all n.

Proof: The proof follows immediately from the de�nition of min-+ convolution, and is given below for

the sake of completeness; it holds for all n that

((f g) h)(n) = min
k6n

f(f g)(k) + h(n� k)g

= min
k6n

�
min
l6k

ff(l) + g(k � l)g+ h(n� k)
	

= min
k6n

�
min
l6k

ff(l) + g(k � l) + h(n� k)g
	

= min
k6n
l6k

�
f(l) + g(k � l) + h(n� k)

	

notice that for a �xed l, f(l) does not change its value, hence the minimum above for that value of l will

occur for the minimum of g(k � l) + h(n� k) over all k's; that is, we have

= min
l6n

�
f(l) + min

l6k6n
fg(k � l) + h(n� k)g

	
= min

l6n

�
f(l) + min

06k�l6n�l
fg(k � l) + h(n� k)g

	
= min

l6n

�
f(l) + min

06u6n�l
fg(u) + h(n� l � u)g

	
> min

l6n

�
f(l) + min

u6n�l
fg(u) + h(n� l � u)g

	
= min

l6n
ff(l) + (g h)(n� l)g

= (f (g h))(n) :
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We would like to note that the relation in lemma 5 is in general not an equality due to the way the

min-+ convolution is de�ned in this study (more speci�cally, due to the subscript of the minimum in

de�nition 1 as being `k 6 n').

Corollary 5 Let a ow R1 � (S�; U) be fed into an S-server with service curve S1. And let the output R2

of this �rst server be fed into another S-server with service curve S2. The following statements hold:

1. The total number of packets, Q1(n) +Q2(n), stored in the tandem network satis�es

1

n

X
k<i6n+k

[(Q1 +Q2)(i) > �] 6 h(�; n)

for all k, n > 0, and �, where

h(�; n) = U
�
((S1 S2) S�)(0) + �; n

�
:

2. The total virtual-delay, D1(n) + D2(n + Æ(n)), experienced by a packet arriving at any time n at

the �rst network element, and at time n+ Æ(n) for some Æ(n) > 0 at the second network element,

satis�es for any Æ(n) > 0

1

n

X
k<i6n+k

[D1(i) +D2(i+ Æ(i)) > �] 6 h(�; n)

for all k, n > 0, and �, where

h(�; n) = U
�
((S1 S2) S�)(�); n

�
:

Proof: The proofs essentially follow by theorems 6 and 8, and lemmas 4 and 5.

First, notice by lemmas 4 and 5 that we have the following inequality which holds for all n for the

output ow R3 of the S-server with service curve S2;

R3(n) > (R2 S2)(n)

> ((R1 S1) S2)(n) by lemma 4

= (R1 (S1 S2))(n) by lemma 5

note that the last relation above is an equality since S1 and S2 here are service curves.

� (Proof for item 1) The proof follows by replacing Q(i) by (Q1 + Q2)(i), R(i) by R1(i), G(i) by

R3(i), and using the above lower-bound on R3(n) (and hence e�ectively replacing S(i � j) by

(S1 S2)(i� j) ), in the proof of theorem 6.

� (Proof for item 2) The proof follows by replacing D(i) by D1(i)+D2(i+ Æ(i), G(i+�) by R3(i+�),

R(i) by R1(i), and using the above lower-bound on R3(n) (and hence e�ectively replacing S(i�j+�)

by (S1 S2)(i� j + �) ), in the proof of theorem 8.

Hence, it is now clear that the bounds in the last two items in corollaries 4 and 5 could actually be

replaced by

minfh(�; n); (g h)(�; n)g

for all � and n > 0. It is also clear by the �rst item in corollary 4 and the whole corollary 5 that

we could view that tandem network as a single S-server with service curve S1 S2, and obtain valid

characterizations.
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We could obtain similar results for any number of network elements in tandem, by a repeated appli-

cation of corollaries 4 and 5. Thus, it has now become clear that the burstiness characterization 6 does

indeed facilitate a systematic treatment of performance guarantees over a tandem of network elements,

analytically.

Finally, one might want to demonstrate the results stated in corollaries 4 and 5 by an example set

below, which is left as an exercise.

Example 8 A ow R1 � (S�; U) is fed into an S-server with service curve S1. The output R2 of this

�rst server is fed into another S-server with service curve S2. The service curves S�, S1, and S2 are as

given below

S�(n) = maxf0; ��(n�D�)g

S1(n) = maxf0; �1(n�D1)g

S2(n) = maxf0; �2(n�D2)g

where we assume �� 6 minf�1; �2g for the practical reasons given in examples 5, 6, and 7. We are

interested in �nding the characterizations of the output ow R3, the total queue size of the tandem

network, and the total virtual-delay experienced through the tandem network, in the framework of our

de�nition, as given by corollaries 4 and 5. One can work out the example for any choices of D�, D1,

and D2, again facilitated by the examples 5, 6, and 7.

Average performance guarantees for a tandem of network elements could also be easily calculated via

the results in this section, as we have presented in section 4.2.1, similarly.

5 Discussions About The New Characterization

Note that the burstiness characterization provided by de�nition 6 facilitates analyses for both average

and scalar worst-case performance guarantees at the same time. Average performance guarantees could

be obtained in general as exempli�ed by the results in section 4.2.1. Scalar worst-case performance

guarantees, on the other hand, are provided by the respective level-crossing functions whose second

arguments (i.e. n) are all set equal to 1. A relevant scalar worst-case performance bound is given by the

the minimum of the �rst argument of the corresponding level-crossing function U(�; 1) that U(�; 1) = 0.

Secondly, note that the burstiness de�nition that we propose here also facilitates a systematic analytical

framework for measurement based analysis probabilistic performance guarantees that would be inferred

via sample-path analyses. In this sense, de�nition 6 is directly applicable to such measurement studies.

This is made possible, since the implications of de�nition 6 (such as theorem 6 and 8) could also be viewed

from the stand point of relative frequency interpretation of probability. However, we would like to note

that the real starting point in getting de�nition 6 is the discussions given for the notion of burstiness via

the concept of level-crossing, as presented in section 3.

Lastly, we would like to point out another contrast between the characterization that we propose here

and the characterization in [1]: Consider feeding a ow R � (S;U) into an S-server with service curve S.

By theorem 3, we know that the queue size Q at the server satis�es

1

n

X
k<i6n+k

[Q(i) > �] 6 U(�; n) for all k, n > 0, and �.

Multiplying both sides by n, we get

X
k<i6n+k

[Q(i) > �] 6 n � U(�; n) for all k, n > 0, and �.
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Figure 2: An \extremal arrival pattern" for the queue size, for some k and n > 50.

Now, if we rotate n � U(�; n) +90 degrees (in the plane on which it is drawn, with respect to the

(0; 0) point) and ip it with respect to the vertical axis after the rotation (in which case this will be the

axis for �), and after same appropriate changes in order to have a corresponding queue size function, we

would get an \extremal arrival pattern" for the queue size as exempli�ed in Figure 2 where time-slots are

drawn very close to each other for convenience.

Scalar worst-case performance bounds in analysis such as those presented in [1], are achieved for

extremal input ows whose arrival patterns, in principal, look like the �gure on the right in Figure 2.

Whereas, in our analysis we consider such \extremal arrival patterns" for the queue sizes. Although, one

could always obtain a corresponding extremal input ow for an \extremal arrival pattern" of a queue size

that we consider here, we believe that it would help if this contrast between the characterization that we

propose here and the characterization in [1] has been pointed out.

6 Conclusions

In this study, we have proposed a deterministic de�nition of burstiness for network traÆc characterization,

based on service curves. The proposed de�nition facilitates performance analyses for both average and

scalar worst-case performance guarantees at the same time, with ease. Average performance guarantees

could be obtained as exempli�ed by the results in section 4.2.1. Scalar worst-case performance guarantees,

on the other hand, are provided by the respective level-crossing functions whose second arguments (i.e. n)

are all set equal to 1. A relevant scalar worst-case performance bound is given by the the minimum of

the �rst argument of the corresponding level-crossing function U(�; 1) that U(�; 1) = 0.

We have shown that the traÆc characterization provided by the proposed de�nition 6 satis�es all the

properties of a traÆc characterization that we have sought to have as stated earlier in the introduction.

Speci�cally, we have shown that the new characterization facilitates a systematic analytical approach

to performance guarantees as also presented by the characterization in [1] and its companion service

model (service curve model) that we have mentioned earlier.

The characterization of a ow according to this de�nition is also measurable by constructing an S-

server with equality, and observing the queue size upon feeding a ow into that server.

The burstiness de�nition that we propose here also facilitates a systematic analytical framework for

measurement based analysis of probabilistic performance guarantees that would be inferred via sample-

path analyses. In this sense, de�nition 6 is directly applicable to such measurement studies. This is made

possible, since the implications of de�nition 6 (such as theorem 6 and 8) could also be viewed from the

stand point of relative frequency interpretation of probability.

We have also tried to clarify the notion of burstiness. We have pointed out that one might want to
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perceive the burstiness of a ow from the perspective of a network element; speci�cally, based on the

queue size behavior that it induces on a network element of interest.

To this end, we have indicated that it is the decay rate of the tail of the queue size distribution that

we care about in deciding the degree of burstiness of a ow with respect to another one, after some

appropriate normalizations of the ows as we have indicated earlier. The faster the decay rate is the less

bursty the traÆc is, and vice versa. More speci�cally, we could decide the burstiness of a traÆc source A

with respect to another one B, from the perspective of a network element of interest, as follows: Normalize

the sources such that the average rate of traÆc coming out of source A is equal to that of source B. Feed

the traÆc coming out of each source A and B into identical network elements � and �, respectively, where

the average rate that each network element serves packets is grater than that of its input. Observe the

queue size distribution in each network element � and �. If there exists a queue size level �0 beyond

which the decay rate of the tail of the queue size distribution in network element � is slower than that of

network element �, then source A is more bursty than source B.

As a future study, it would be interesting to examine a similar traÆc characterization and its implica-

tions, where the new characterization would also have a lower-bound, as well as an upper-bound, on the

quantity given in de�nition 6. It would be also interesting to incorporate maximum service curves into

our analysis, in which case a service curve that we have referred to in this study so far would be called

as minimum service curve. A network element is said to deliver a maximum service curves S to an input

ow R if the corresponding output ow G satis�es

G(n) 6 (R S)(n) for all n:
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